Swarm Fie l d Theory | Geometric Unification Framework /* ---------- Design tokens ---------- */ :root{ --ink:#1f2a44; --muted:#5f6b7a; --ru l e:#d9dee5; --h1:#0f172a; --h2:#0b3d91; --accent:#0b5fff; --bg:#fff; --card:#f9fbff; --focus:#94b8ff; --wrap:1100px; --space-1: .35rem; /* xs */ --space-2: .65rem; /* sm */ --space-3: 1rem; /* md */ --space-4: 1.5rem; /* l g */ --space-5: 2rem; /* x l */ --radius: 12px; } /* ---------- Base ---------- */ *,*::before,*::after{ box-sizing:border-box } html:focus-within{ scroll-behavior:smooth } @media (prefers-reduced-motion:reduce){ html:focus-within{ scroll-behavior:auto } *{ animation-duration:0.001ms !important; animation-iteration-count:1 !important; transition: none !important } } body{ margin:0; font-family: system-ui, -apple-system, Segoe UI, Roboto, Helvetica, Arial, sans-serif; color:var(--ink); background:var(--bg); line-height:1.6; text-rendering:optimizeLegibility; -webkit-font-smoothing:antialiased; } /* Fluid type: scales nicely from phones to desktop */ h1{ margin:.1rem 0 .25rem; font-weight:750; color:var(--h1); letter-spacing:-0.01em; font-size:clamp(1.35rem, 2vw + 1rem, 2.25rem) } h2{ margin:var(--space-4) 0 var(--space-2); color:var(--h2); font-size:clamp(1.05rem, 1vw + .9rem, 1.35rem) } h3{ margin:var(--space-3) 0 var(--space-1); font-size:clamp(1rem,.6vw + .9rem,1.15rem) } p, li{ font-size:clamp(1rem, .35vw + .95rem, 1.06rem) } .small,.note{ font-size:.95rem; color:var(--muted) } a{ color:var(--accent); text-decoration:underline; text-decoration-thickness:.06em; text-underline-offset:.18em; text-decoration-skip-ink:auto; transition:text-decoration-thickness .15s ease, color .15s ease; } a:hover, a:focus{ text-decoration-thickness:.12em } a:visited{ color:#6a7cd6 } a:focus-visible{ outline:2px solid var(--focus); outline-offset:2px; border-radius:4px } img{ max-width:100%; height:auto; display:block } .skip{ position:absolute; left:-9999px; top:auto; width:1px; height:1px; overflow:hidden; } .skip:focus{ left:12px; top:12px; width:auto; height:auto; padding:.5rem .75rem; z-index:9999; background:#fff; border:2px solid var(--focus); border-radius:6px; box-shadow:0 3px 10px rgba(0,0,0,.08); } header, main, footer{ width:100% } .wrap{ max-width:var(--wrap); margin: clamp(16px, 3vw, 48px) auto; padding: 0 clamp(8px, 2.5vw, 16px); } .tag{ color:var(--muted); margin:.2rem 0 1.2rem } .rule{ border-top:1px solid var(--rule); margin:var(--space-5) 0 var(--space-4) } /* ---------- Hero ---------- */ .hero{ max-width:960px; margin: var(--space-4) auto var(--space-2); padding: clamp(.8rem, 2vw, 1.5rem) clamp(.7rem, 2vw, 1.25rem); border:1px solid #e5e7eb; border-radius:var(--radius); background:#fafafa; } .hero h1{ margin:0 0 .25rem; line-height:1.15; color:#0f172a } .hero .slogan{ margin:.25rem 0 1rem; color:#475569; font-size:clamp(1rem,.3vw + .95rem,1.05rem) } .hero p{ margin:0 0 .75rem; color:#1f2937 } /* ---------- Cards / details ---------- */ details.faq{ background:#f0f8ff; border:1px solid #7ccfff; border-radius:8px; padding:.75rem; margin:0 0 1rem; } details.faq > summary{ font-size:1.1rem; font-weight:650; cursor:pointer; color:#1b2942; list-style:none; } details.faq > summary::-webkit-details-marker{ display:none } details.faq div{ margin-top:.6rem; color:#1b2942 } details.privacy-card{ border:1px solid var(--rule); border-radius:8px; background:var(--card); padding:.6rem .8rem .85rem; margin:1rem 0; } details.privacy-card > summary{ cursor:pointer; list-style:none; font-weight:750; color:var(--ink); font-size:clamp(1.05rem, .6vw + 1rem, 1.2rem); } details.privacy-card > summary::-webkit-details-marker{ display:none } details.privacy-card[open]{ padding-bottom:.9rem } .privacy-body p{ margin:.5rem 0 } /* ---------- Table ---------- */ .table-wrap{ overflow-x:auto; -webkit-overflow-scrolling:touch; border:1px solid var(--rule); border-radius:8px; background:#fff; } table.numbers{ width:100%; border-collapse:separate; border-spacing:0; min-width:520px; /* scroll on phones */ font-size:clamp(.92rem, .35vw + .88rem, .97rem); } table.numbers th, table.numbers td{ border-bottom:1px solid var(--rule); padding:.65rem .6rem; text-align:left; vertical-align:top; white-space:nowrap; } table.numbers th{ font-weight:700; color:var(--h2); position:sticky; top:0; background:#fff } table.numbers tbody tr:nth-child(odd){ background:#fafbfe } blockquote{ margin:1rem 0; padding:.5rem .8rem; border-left:3px solid var(--rule); color:#3a3f49; background:#fafbfc; } /* ---------- Footer ---------- */ footer{ border-top:1px solid var(--rule); background:#fafbfc } footer .wrap{ margin:28px auto; display:flex; gap:1rem; justify-content:space-between; align-items:center; flex-wrap:wrap; } /* ---------- Layout with sidebar ---------- */ .layout{ display:grid; grid-template-columns: 320px 1fr; gap: clamp(.7rem, 2vw, 1.25rem); align-items:start; } .sidebar{ position:sticky; top:18px; max-width:100%; word-break:break-word; } .card-link{ border:1px solid var(--rule); background:var(--card); padding:.9rem; border-radius:8px; margin:0 0 1rem; } .card-link h3{ margin:.1rem 0 .35rem } .card-link p{ margin:.4rem 0 } /* ---------- Mobile-first overrides ---------- */ @media (max-width:980px){ .layout{ grid-template-columns:1fr } .sidebar{ position:static; margin-bottom:var(--space-4) } .hero{ padding:.9rem .7rem } footer .wrap{ flex-direction:column; gap:.5rem; align-items:flex-start } } @media (max-width:600px){ .wrap{ padding:0 6px } .card-link{ padding:.6rem .55rem } table.numbers th, table.numbers td{ padding:.5rem .4rem } } /* ---------- Dark mode ---------- */ @media (prefers-color-scheme:dark){ body{ background:#0b0e13; color:#e8edf5 } .tag,.small,.note{ color:#9fb0c6 } .rule, footer{ border-color:#293344; background:#0f141b } details.privacy-card, details.faq, .card-link{ background:#0f141b; border-color:#293344 } blockquote{ background:#0f141b; color:#cdd9ea } a{ color:#8bb0ff } a:visited{ color:#a2b9ff } .hero{ background:#0f141b; border-color:#293344 } .hero h1{ color:#e8edf5 } .hero .slogan{ color:#b7c4da } .hero p{ color:#d8e2f2 } table.numbers{ background:#0b0e13 } table.numbers th{ background:#0b0e13 } table.numbers tbody tr:nth-child(odd){ background:#0f141b } .table-wrap{ background:#0b0e13; border-color:#293344 } }

Swarm Field Theory

Swarm Field Theory is not another unifying story. It is a unifying mathematics. Where others speculate, this framework derives physical constants from first principles.

Modern physics is often wrapped in speculation — multiverses, hidden dimensions, and exotic entities we may never observe. Swarm Field Theory takes the opposite approach. It derives familiar constants — including Newton’s gravitational constant — directly from geometry and tension, without adding layers of conjecture.

The goal is simple: make physics simpler, testable, and grounded in clear mathematics. Gravity, electromagnetism, and quantum behavior emerge from the same coherent structure — no extra dimensions required.

Privacy

This site does not collect or store personal data, does not use cookies, and does not require login.

Traffic metrics may be provided in aggregate, non-identifying form to measure basic page views and performance.

No personally identifiable information is collected, processed, or shared. Visitors may access the site freely without consent.

Contact: [email protected]

Swarm Field Theory

A modest, math-first framework for unification in physics

Swarm Field Theory models real space as a lattice of tension-bearing membranes stretched between zero-nodes. From this simple geometry, fundamental constants — including Planck’s constant (h), the fine-structure constant (α), the speed of light (c), the elementary charge (e), the gravitational constant (G), and others — emerge directly from first principles.

Swarm Field Theory proposes that real space is formed by membranes around zero nodes, and that waves propagate helically. Learn more about the geometry →

The Geometry

Space is treated not as empty volume but as a woven array of two-dimensional membranes anchored at zero-nodes. These sheets intersect at fixed angles and carry tension, forming a real yet massless scaffold. Disturbances travel as helical waves bound by membrane tension and node spacing. Quantization arises from discrete apertures in the lattice; energy, momentum, and phase follow from geometry and boundary conditions.

What Falls Out (from geometry alone)

  • Electromagnetic set: h, α, e, ε₀, μ₀, Z₀, c
  • Gravitational: G; Planck family (mₚ, ℓₚ, tₚ, Eₚ)
  • Thermal: kB, σ, a, b, TP
  • Atomic touchstones: R∞, a₀ (with noted mass inputs)

The Simplification (UFEB)

The Unified Field Equation, Budget form (UFEB), replaces continuous time with discrete updates. Each update is a reconciliation of lattice-tension budgets — like closing a balance sheet. The lattice shares a universal response interval (τ), but consequences still propagate locally at finite speed (c), preserving relativity.

“We measure progress in steps, not seconds.”

Publications

Featured Papers

Open-access papers with full derivations and worked numerics:

Numbers That Work

Swarm Field Theory derives fundamental constants directly from geometry, matching CODATA values without curve fitting.

Quantity CODATA (SI) SFT (derived) Paper
Planck’s constant, h 6.62607015×10⁻³⁴ J·s (exact) 6.6264×10⁻³⁴ J·s DOI
Fine-structure constant, α 7.2973525693×10⁻³ 7.2973×10⁻³ DOI
Elementary charge, e 1.602176634×10⁻¹⁹ C (exact) 1.6022×10⁻¹⁹ C DOI
Vacuum permittivity, ε₀ 8.8541878128×10⁻¹² F·m⁻¹ 8.854×10⁻¹² F·m⁻¹ DOI
Vacuum permeability, μ₀ 1.25663706212×10⁻⁶ H·m⁻¹ 1.257×10⁻⁶ H·m⁻¹ DOI
Gravitational constant, G 6.67430×10⁻¹¹ m³·kg⁻¹·s⁻² 6.6743×10⁻¹¹ m³·kg⁻¹·s⁻² DOI

About

John Paul Crumpler, PE, is a licensed professional engineer with 46 years of experience in applied research, machine design, energy systems, and theoretical physics. He has authored numerous trade articles, technical reports, and fact sheets; taught continuing-education courses for engineers; and lectured at the University of Georgia (PhD bioengineering cohort). He has also advised undergraduate students in energy systems at Georgia Tech and the University of Virginia.